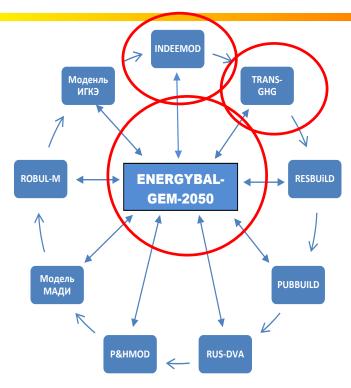


Modeling low carbon transitions: industry and transport


Igor Bashmakov Center for Energy Efficiency - XXI

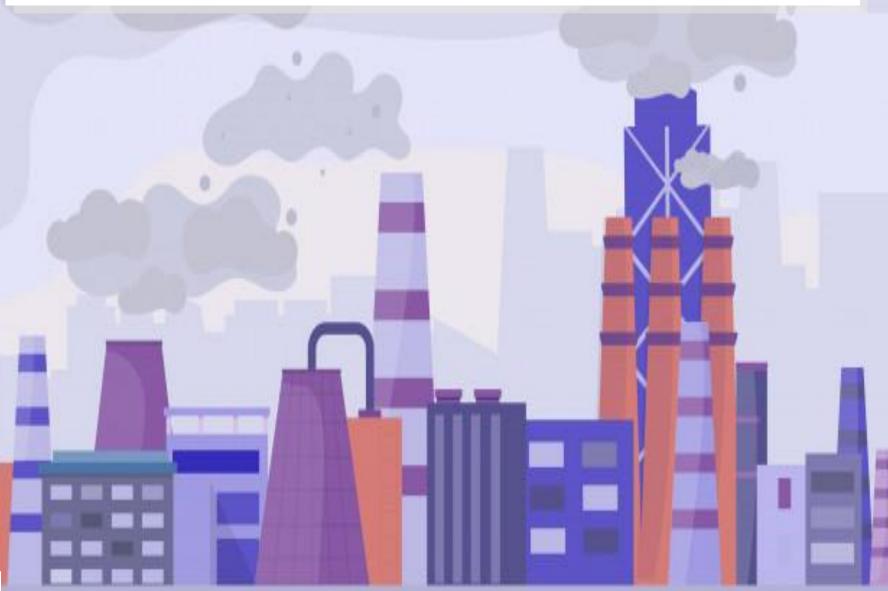
www.cenef.ru 8 (499) 120-9209 We spend our energy to save yours!

Cloud (set) of 10 models used for Russia's long-term LCDS

Duplicate models were used to improve the reliability of results for several sectors (power and heat generation, transportation, AFOLU)

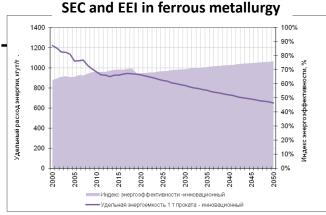
Global prospects are assessed using CENEf-XXI's global model MoG³EM-21-50 (21 global regions)

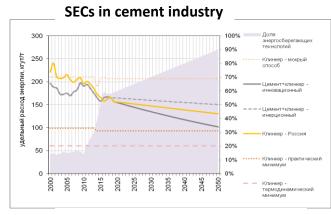
The model set is built around the core multisectorial model –

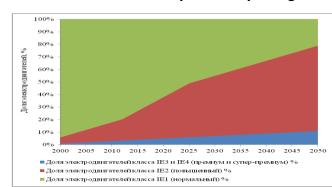

ENERGYBAL-GEM-2050

The 'cloud' of models includes macroeconomic and sectorial models developed by CENEf-XXI:

- Macroeconomic model RUS-DVA
- Model for power and heat sector P&HMOD
- Model for industry INDEE-MoD
- Model for transport TRANS-GHG
- Models for residential sector REsBUILD and «Assistant of EE MFB rehabilitation»
- Model for public buildings PUBBUILD
 Models developed by other institutions:
- Model for AFOLU sector ROBUL-M (Center for Forest Ecology and Productivity of the Russian Academy of Sciences (CEPF RAS))
- AFOLU model (Institute of global climate and ecology RAS)
- Automobile transport model (Moscow Automobile and Road Construction State Technical University (MADI))


Model for industry - INDEE-MOD



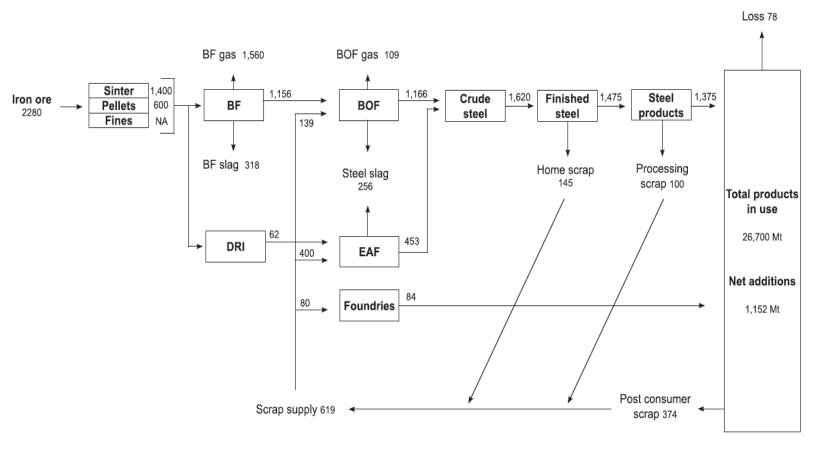

Model for industry - INDEE-MOD

- Detailed engineering simulation model. Parameters are calibrated based on data for 2000-2019
- Estimates production of energy intense industrial products and related specific energy use, as well as cross-cutting technologies depending on:
 - Interconnected evolution of technological structure for individual products
 - Selection of capacity modernization rate
 - Selection of BATs EE parameters for new capacity additions
 - Circularity of economy rate of secondary products use (scrap, waste paper, etc.)
- Projections of new capacity commissioning are based on products demand growth and old capacity retirement rates
- Macroeconomic inputs are from ENERGYBAL-GEM-2050
- INDEE-MOD outputs (production and SECs) are inputs to ENERGYBAL-GEM-2050

Electric drivers by efficiency rating

Модель промышленности - INDEE-MOD

- Логика моделирования: основа модели технологии, продукты или системы производства взаимосвязанных продуктов и типовое промышленное оборудование
- Продукты могут производиться по разным технологиям
- **▶** В модели ENERGYBAL-GEM-2050
 - Функции суммарного спроса на энергию по каждому продукту
 - Объем производства
 - Технологический фактор
 - Загрузка производственных мощностей
 - Средняя цена на энергоресурсы, на которую влияет цена углерода
 - ГСОП
- Функции спроса на отдельные энергоносители по каждому продукту:
 - показатели качества энергии
 - ценовая конкуренция
- ▶ В модели INDEE-MOD определяются:
 - Перечень технологий для производства продуктов
 - Взаимосвязанные объемы производства продукции, которые зависят от выбора технологий
 - Динамика удельных расходов энергии и интегральных показателей энергоэффективности

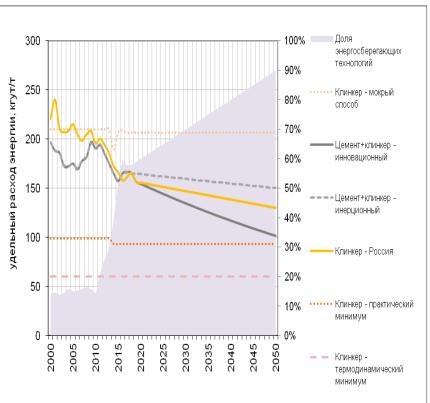

Перечень продуктов и типовых технологий

- Добыча нефти
- 🟓 Добыча газа
- 🟓 Добыча угля
- Первичная переработка нефти
- Переработка газа
- Руда железная товарная
- Агломерат железорудный
- Окатыши железорудные (окисленные)
- Кокс металлургический
- 🟓 Чугун
- Сталь мартеновская и кислородноконвекторная
- Электросталь
- Прокат черных металлов
- Электроферросплавы
- Горячебрикетиро-ванное и прямовосстановленное железо (ГБЖ и ПВЖ)

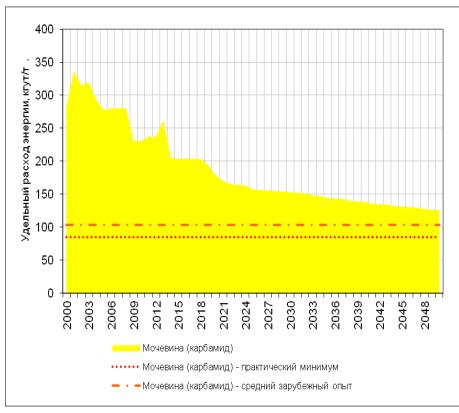
- Алюминий (первичный и вторичный)
- Глинозем
- Аммиак синтетический
- Минеральные удобрения
- Мочевина (карбамид)
- Каучук синтетический
- **Ч** Целлюлоза
- Бумага
- **н** Картон
- 🔖 Цемент
- Клинкер
- Электродвигатели
- Системы пароснабжения
- Системы сжатого воздуха

Пример материальных потоков в черной металлургии

- ▶ В модели INDEE-MOD используются подобные схемы для взаимосвязанных производственных комплексов
- ▶ Например, потребность в коксе или чугуне определяется в зависимости от сочетания технологий производства стали
- По каждому продукту учитывается экспорт и импорт
- Учитывается использование вторичных материалов


Определение удельного расхода энергии

- 🟓 По каждой технологии для каждого продукта определяются бенчмарки
 - ▶ ВАТ наилучшая имеющаяся технология в мире
 - ВРТ наиболее распространенная технология в мире
 - теоретический минимум
- В модели формируется баланс производственных мощностей:
 - выбытие ПМ задается доля
 - модернизация ПМ задается доля и возможность выбора параметров энергоэффективности – в основном - ВРТ
 - строительство новых ПМ определяется в зависимости от роста экономики, спроса на основные конечные промышленные продукты (прокат, цемент, алюминий, удобрения и т.п.) и от изменений материального баланса отрасли. Есть возможность выбора ВАТ или ВРТ
- ▶ Значение энергоемкости в целом по продукту получается как средневзвешенное от энергоемкостей на оставшихся немодернизированных, модернизированных и новых мощностях
- ▶ В модель ENERGYBAL-GEM-2050 передаются:
- ► Годовые темпы снижения показателя энергоемкости продукта и взаимосвязанные объемы производства продуктов, которые используются в функциях спроса на энергию



Динамика удельных расходов энергии и бенчмарки

Клинкер

Мочевина

Выбросы ПГ определяются а модели ENERGYBAL-GEM-2050

Динамика прямых выбросов CO₂ в промышленности в сценарии «1,5 градуса»

Динамика прямых и косвенных выбросов всех ПГ в промышленности в сценарии «1,5 градуса»

Изменение технологической структуры позволяет снижать выбросы от промышленных процессов

Model for transport-TRANS-GHG

Model for transport-TRANS-GHG

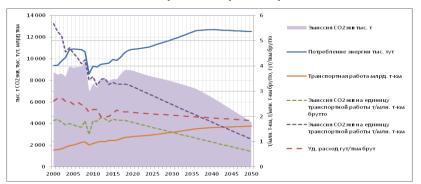
- ▶ Detailed engineering simulation model. Parameters are calibrated based on data for 2000-2019
- Freight transport: 8 modes, including rail, oil and gas pipelines, water, trucks, air
- Passenger transport 13 modes, including cars, buses, rail, light rail, water, air, bicycles
- Parameters modeled freight and passenger turnover and structure, transportation infrastructure evolution, vehicle park dynamics and composition, fuel use, GHG emissions, other pollutants
- ➡ Macroeconomic inputs are from ENERGYBAL-GEM-2050 (for example freight turnover goes from INCEE-MOD to ENERGYBAL-GEM-2050 and TRANS-GHG)
- **▶** TRANS-GHG outputs are inputs to ENERGYBAL-GEM-2050

Модель транспорта TRANS-GHG

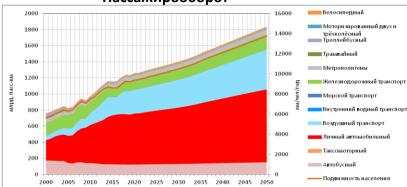
- ▶ В модели ENERGYBAL-GEM-2050 используются функции суммарного спроса на энергию по каждому из 4-х агрегированных видов транспорта
 - Транспортная работа
 - Технологический фактор
 - Загрузка производственных мощностей (трубопроводный и ж/д)
 - Средняя цена на энергоресурсы
 - ГСОП
- Функции спроса на отдельные энергоносители по каждому продукту:
 - показатели качества энергии
 - ценовая конкуренция
- **▶** В модели **TRANS-GHG** определяются:
 - Объемы транспортной работы
 - Парк транспортных средств
 - Развитие транспортной инфраструктуры (протяженность путей, число заправочных или зарядных станций и т.п.)
 - Структура грузооборота
 - Структура пассажирооборота
 - Энергоемкость по видам транспорта технологический фактор
 - Выбросы ПГ по видам транспорта

Перечень основных видов транспорта

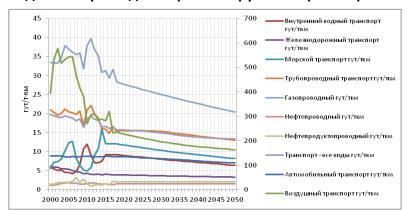
- Автомобильный
- Легковые
- Грузовые
- Автобусы
- Двух и трехколесные
- Велосипедный
- Пешеходный
- Железнодорожный
- Электрифицированный
- На жидком топливе
- На прочих видах топлива

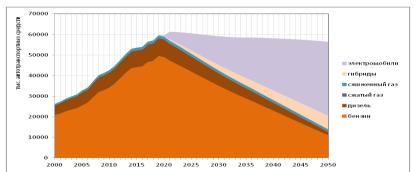

- Городской электрический
- Метро
- Легкий рельсовый
- Троллейбусы
- Трубопроводный
- Газопроводный
- Нефтепроводный
- Авиационный
- **Водный**
- Речной
- Морской

Матрица типов автомобилей	бензин	дизель	сжатый газ	сжижен ный газ	гибриды	электромо били
легковые						
в личной собственности						
такси и служебные						
грузовые						
автобусы						
2и 3-х колесные						

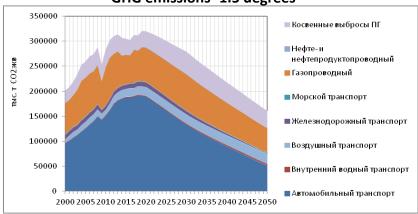


Модель выдает широкий набор показателей


Индикаторы ж/д транспорта


Пассажирооборот


Удельные расходы энергии на грузовом транспорте


Vehicles park

Freight turnover

GHG emissions -1.5 degrees

Чтобы разрабатывать политику низкоуглеродной трансформации экономики в отдельных секторах и вести эффективный диалог с бизнес-сообществом нужны детальные модели с выделением как продуктов, так и технологий.

Модели МОБ рассматривают агрегированные по стоимости продукты и безразмерные агрегированные технологические коэффициенты. Этого может служить первым приближением, но этого явно недостаточно.

Спасибо!

Igor Bashmakov Center for energy efficiency -XXI

www.cenef.ru 8 (499) 120-9209 **We spend our energy to save your's!**

